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Abstract—The data collected from a vehicle’s Controller
Area Network (CAN) can quickly exceed human analysis or
annotation capabilities when considering fleets of vehicles,
which stresses the importance of unsupervised machine learning
methods. This work presents a simultaneous clustering and
segmentation approach for vehicle CAN-data that identifies
common driving events in an unsupervised manner. The ap-
proach builds on self-supervised learning (SSL) for multivariate
time series to distinguish different driving events in the learned
latent space. We evaluate our approach with a dataset of real
Tesla Model 3 vehicle CAN-data and a two-hour driving session
that we annotated with different driving events. With our
approach, we evaluate the applicability of recent time series-
related contrastive and generative SSL techniques to learn
representations that distinguish driving events. Compared to
state-of-the-art (SOTA) generative SSL. methods for driving
event discovery, we find that contrastive learning approaches
reach similar performance.

I. INTRODUCTION

Deep learning is being applied successfully in the auto-
motive industry to many use cases such as autonomous driv-
ing [1] or predictive maintenance (PdM) [2]. For instance, for
PdM, multivariate time series data collected from a vehicle’s
Controller Area Network (CAN) can be used to estimate the
health condition of a car component [2]. Furthermore, as
CAN-data reflects the overall state of the vehicle, based on
this data, it is possible to infer information about the current
driving event, situation, or behavior (e.g., [3], [4]).

A car can generate multiple gigabytes of vehicle CAN-
data in a single driving session [5], which may grow quickly
to multiple tera- or petabytes when considering fleets of
cars. For this reason, it is a time-consuming and expensive
task for domain experts to manually annotate or analyze
these enormous amounts of data [4]. Consequently, problems
like the sampling bias may limit the performance of, for
instance, PAM models trained on non-reviewed data. A
possible solution is using unsupervised machine learning to
discover information in extensive unlabelled collections of
data. Recent work has used self-supervised learning (SSL)
to transform unlabelled vehicle CAN-data into a new repre-
sentation that allows distinguishing different driving events
or behavior (e.g., [3], [6]) without any prior knowledge.

This paper focuses on the unsupervised discovery of driv-
ing events by proposing a method that simultaneously clus-
ters and segments vehicle CAN-data. Consider the driving
events A, B, and C composing a driving scenario in Fig. 1.

1The authors are with the Telecooperation Lab at the
Technical ~ University — Darmstadt,  Germany {k reutz, max,
sanchez}@tk.tu-darmstadt.de

2The authors are with COMPREDICT GmbH, Darmstadt, Germany
{esbel}@compredict.de

1

Driving Scenario Vehicle CAN-data

Encoded RepresentaEion
T

1 1
oEoclicol] '

A? B? C? A* B* c*
Encoded events: A* 1= B¥, A* |=C*, B* |=C*

A B I c
Events:Al=B,Al=C,B!=C

Fig. 1. A neural network encodes vehicle CAN-data into a representation,
where the same driving events become similar at all time steps. Such a
representation allows to cluster each time step in isolation, which simulta-
neously clusters and segments vehicle CAN-data into driving events.

State-of-the-art (SOTA) SSL methods for vehicle CAN-data
(e.g. Drive2Vec [3]) learn representations of vehicle CAN-
data, where all time steps that are part of, e.g., event type
A share a similar representation A*, and all time steps of
other events are different (B*,C*). Due to this property
in the encoded representation, we can cluster all individual
time steps in isolation and obtain a state sequence that is 1)
constant for the duration of events and 2) only differs at the
event changepoints, which effectively segments and clusters
the data the same time.

Previous work on unsupervised driving event discovery
can be classified into motif discovery (e.g., [7]), time series
segmentation (e.g., [8], [4]), subsequence clustering (e.g., [9],
[10]), simultaneous segmentation and clustering (e.g., [11])
and generative SSL methods for representation learning
(e.g., [6], [3]). Aside from the latter SSL methods and the
approaches in ([9], [11]), the majority of previous methods
first uses a segmentation or motif discovery algorithm to
discover potential event segments, extracts segment level
features with, e.g., a neural network, and then clusters the
resulting segments in a mandatory final step.

Similar to and inspired by Toeplitz Inverse Covariance-
based Clustering (TICC) [11] and Variational Animal Motion
Embedding (VAME) [12], our approach simultaneously clus-
ters and segments vehicle CAN-data. Because our approach
produces a sequence of event states that are split into seg-
ments at their changepoints, it is not limited to a maximum
length of events as in [9] and is independent of segments
obtained by a segmentation or motif discovery algorithm.

Furthermore, we evaluate recent contrastive SSL methods
for representation learning of vehicle CAN-data. To the best
of our knowledge, we are the first to explore contrastive
SSL methods for this kind of data. Recent advances in deep
learning-based time series changepoint detection (CPD) [13]
and contrastive SSL for multivariate time series (e.g., [14],
[15]) motivate to research the applicability of contrastive
SSL for vehicle CAN-data. Contrastive SSL has shown
extraordinary results in distinguishing different states when
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Fig. 2. High level overview of the proposed two-stage approach

applied to human activity recognition (HAR) data [13],
electroencephalography (EEG) data [15], or household con-
sumption data [14], among others. The main contributions
of this work are as follows:

o An approach to discover driving events in an unsu-
pervised manner, which simultaneously clusters and
segments vehicle CAN-data.

o An empirical evaluation of contrastive SSL methods
for vehicle CAN-data, which is (to the best of our
knowledge) the first step in the direction of applying
these kinds of methods to vehicle CAN-data.

II. NOTATIONS AND DEFINITIONS

We define a multivariate time series M7T'S as a tuple
MTS = (X1,Xo,...,Xn) € RN where each element
Xy € MTS represents a d-dimensional measurement such
that X; = (21, ...,24) forall 0 < ¢t < N.

We define a subsequence S of MTS as a collec-
tion of points starting at a time point k£ and end-
ing at index [. Formally, we define this subsequence as
Skt = (Xk, ..., X;) € MTS where C denotes that S is a
subsequence of MT'S.

A sliding window 1is a fixed size window of length w that
moves sequentially over MT'S. For an MTS of length N
and for each time point X; € MTS with w < t < N,
w << N, we can define a sliding window as a subsequence
of this MTS with S;_(,,_1): € MTS".

III. APPROACH

A high-level overview of our two-stage approach is de-
picted in Fig. 2. In Stage 1, we transform vehicle CAN-
data into a new representation by using the sliding window
technique and encoding each sliding window with a neural
network. The encodings are concatenated to compose a
new time series which is enriched at each time step with
information about the current driving event state. Afterward,
in Stage 2, we cluster the sliding window representations
and obtain a one-dimensional cluster sequence, which can
be considered a discrete driving event state sequence. The
state sequence is segmented in variable-length driving events

! Any timepoint [ = ¢ is the end of a sliding window, and k = ¢ — (w—1)
is the start. The first possible sliding window always starts at £ = 1 and
ends at ¢ = w and the last sliding window always ends with [ = N. This
reduces the time series by w — 1 time steps, and w is the new start point.
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Fig. 3. Detailed overview of both stages of the approach. Stage 1 concerns
with the time series representation, Stage 2 concerns with the clustering and
segmentation

by splitting the sequence at the cluster changepoints. The
corresponding constant cluster of a segment characterizes the
respective driving event.

A. Stage 1 - Time Series Representation

We summarize our approach in more detail in Fig. 3. The
time series representation in Stage 1 is obtained by first
sliding a fixed-size window of length w over a d-dimensional
multivariate time series MTS € RN of length N. Af-
terward, each window is encoded to a new representation.
The resulting representations are concatenated to a new
multivariate time series that has a different dimension but
preserves the temporal order.

We consider a representation to be a mapping from a dx w-
dimensional sliding window input to a new e-dimensional
representation. This mapping is defined by an encoder func-
tion f : R4*®¥ — Re. The function f can be interpreted
as the encoder part of an Autoencoder (AE). For f, we use
the concept of a timestamp-level representation, where each
point in time X, € MTS with w < t < N is mapped
to a new representation z;. We refer to the representation
2z = f(Si—(w-1)t) as a timestamp-level representation,
which is the encoding of a sliding window S;_ (1),

We define a time series representation as an e-dimensional
representation of a d-dimensional MT'S, where each sliding
window was encoded with f. Formally, the time series
representation is a function g : R4*N — RexN—(w—1) that
maps (encodes) the elements of MTS to an e-dimensional
representation and preserves their temporal order. By apply-
ing f to all sliding windows over MT'S, we obtain the time
series representation function g, defined as:

gMTS) = [f(S1.w); F(S2,0+1)s s F(SN—(w-1),5)] (D)
= [Zwazw-i-lv'-vZN] (2)
B. Stage 2 - Simultaneous Segmentation and Clustering

A detailed overview of Stage 2 is depicted in
Fig. 3. In Stage 2.1, each timestamp-level representa-
tion z € [z, Zw+1, - 28] = g(MTS) is clustered, with the
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Fig. 4. Overview of the neural networks used in this work. a) encoder-
decoder models, b) contrastive learning models

number of clusters fixed to k. The clustering process can
be formally defined by a partition h := {H;, ..., H;} that
partitions a time series representation into k disjoint non-
empty subsets. The partition h is produced by a clustering
algorithm (e.g., k-means or TICC) with |h| = k. Further, we
denote the assignment of a timestamp-level representation z
to its cluster by a function ¢ : R® — N. For any z € R®,
c¢(z) returns the index j of the cluster where z € H;. We
apply ¢ to each z € [z, ..., z2y]| and obtain a sequence of
cluster assignments seq = [¢(2y), .., ¢(2N)]-

VzeR® ¢(z2)=j = z€H, 3)

In Stage 2.2., a simple segmentation step splits the cluster
assignment sequence seq at the changepoints into segments.
Finally, each segment is assigned to its constant cluster
assignment, which directly clusters the obtained segments.

Driving Event Discovery: The discovery of driving events
from the segmentation is achieved by grouping all segments
under their corresponding constant cluster assignment. The
segments of a cluster can be interpreted by, e.g., a domain
expert, or they can be compared to labeled data to find high
overlaps between a cluster and ground truth annotations.
Finally, each segment in the time series can be annotated with
the driving event interpretation of its cluster. The segmenta-
tion can be visualized, for example, on a GPS trajectory by
coloring each time step with its cluster assignment.

C. Application to Multiple Multivariate Time Series

Our approach can easily scale to multiple MTS when
considering Stage 1 with a collection of multivariate time
series (Cpyrg) instead of a single MTS. In this setting,
Stage 1 is carried out for each MT'S € Cjp;rg individually
and we obtain a collection of time series representations
C, :={ g(mts) | mts € Cprrs }. In Stage 2.1, the parti-
tion h is computed on all datapoints in C,. Finally, we
can obtain a collection of cluster assignment sequences

Cseq :={ [c(za)s -  c(2p)] | [2ay s 2] € Cy }.

D. Neural Network Encoder Training

Following the SSL taxonomy in [16], the encoder f
can be trained in a generative or a contrastive manner.
A generative (Encoder-Decoder) model is usually trained
with a decoder fg.. that has the goal to reconstruct the d-
dimensional input from the e-dimensional representation of f
with minimal error. Contrastive learning directly trains the
encoder with a contrastive loss that pushes similar data points

to the same representation and non-similar data points to a
different representation.

As summarized in Fig. 4, as generative methods, we use
a normal AE as a baseline that was used in [17], and a
Variational AE (VAE) with an additional future decoder
and k-means objective, i.e., VAME [12]. Furthermore, we
compare these methods to a SOTA Encoder-Decoder model
for vehicle CAN-data called Drive2Vec [3]. Drive2Vec learns
representations that are predictive about the future, helping
to better differentiate the current driving situation. Similarly,
VAME is trained with a present and a future decoder to
learn representations that are predictive about the future.
We extend VAME to VAME* with a past decoder to learn
predictive representation about the past and the future.

As contrastive learning methods, we consider Temporal
Neighborhood Coding (TNC) [15] and a triplet loss approach
(T-Loss) [14]. TNC assumes a time series to be stationary for
the full duration of an event. Given a reference window, they
propose estimating it’s stationary temporal neighborhood
with a statistical test. Afterward, random windows from
this neighborhood are enforced to be encoded to a similar
representation, and windows outside the neighborhood to a
different one by using a discriminator on the embeddings. T-
Loss accepts variable-length time series input and is trained
with a triplet loss. Random subsequences of a reference win-
dow are enforced to be encoded similarly to it, but different
to other random windows. Similar to TNC, a larger reference
window can be seen as an event’s temporal neighborhood.

More technical details about the selected SSL methods
are out of scope in this manuscript and we must point to
the original works for further reading. The SSL methods we
consider can encode corresponding time steps similar to each
other. Towards this end, TNC has been used for, e.g., HAR
data [15], T-Loss for Household Consumption data [14],
and an AE in [17] for CAN-data. Using future context for
training has been shown to effectively encode events to
similar feature representations by Drive2Vec in [3] for CAN-
data, and with VAME for mice behavior data in [12]. We
focus on empirically evaluating how these methods compare
as a basis for our approach when learning timestamp-level
representations of CAN-data.

E. Clustering Methods

As shown in Fig. 3, we use the k-means and TICC cluster-
ing algorithms to cluster the encoded time steps of vehicle
CAN-data. We chose the k-means algorithm as a method
that does not include any temporal dependency between time
steps in order to leverage the learned representations that
distinguish different driving events. On the other hand, we
chose TICC because it incorporates a temporal dependency
between time steps by using a dependency network.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup
We use the neural networks and TICC implementations
available in their respective GitHub repositories (TNC2, T-

Zhttps://github.com/sanatonek/TNC _representation_learning



TABLE I
RESULTS OF THE BEST PERFORMING PARAMETER CONFIGURATIONS FOR EACH MODEL, G=GENERATIVE, C=CONTRASTIVE

VAME* (G) VAME (G) Drive2Vec (G) T-Loss (C) TNC (C) AE (G)
k-means | TICC | k-means | TICC | k-means | TICC | k-means | TICC | k-means | TICC | k-means | TICC
Fi (1) 0.469 0.399 0.464 0.374 0.430 0.378 0.392 0.377 0.338 0.294 0.310 0.286
e 20 20 20 20 15 5 15 5 20 20 10
10 5 15 10 10 10 15 16 10 5 10

Loss®, VAME?, TICC?). As suggested in [18], we have mod-
ified the TNC model to use an encoder with dilated causal
convolutions. For Drive2Vec, we use our implementation
that, instead of gated recurrent units (GRU), uses a temporal
convolutional network (TCN). We implemented a version of
the AE from [17] in the PyTorch® deep learning framework.

B. Use Case and Training Dataset

We consider a use case from the automotive domain,
where the goal is to discover frequently occurring driving
events in vehicle CAN-data in an unsupervised manner. We
have collected a dataset that consists of 60 multivariate time
series recordings of a Tesla Model 3 vehicle. The data has
been recorded in real driving sessions by using a datalogger.
The datalogger is mounted into the car to directly access the
CAN-bus over an external interface. It records the values
of 113 vehicle signals upsampled at a frequency of 200hz.
However, from these 113 signals, we select only a subset
of nine signals that we consider to be relevant for driving
events: ‘Brake pressure front left/right’ [bar], ‘Electric motor
torque’ [Nm], ‘Accelerator pedal position’ [%], ‘Steering
wheel angle’ [°], ‘Velocity’ [km/h], ‘Longitudinal accel-
eration’ [m/s?], ‘Lateral acceleration’ [m/s?], and ‘Yaw
rate’ [°/s]. To preprocess the data, we follow related work
(e.g., [3], [6], [11]) and resample the data from 200Hz to
10Hz and apply Z-normalization separately on each channel.

C. Ground Truth - Manual Annotation of Testing Data

We have manually annotated a driving trip to compare
our approach’s results against a ground truth. The trip was
around two hours long (following the evaluation in [11]),
and designed to include different traffic scenarios that we
believe to occur on urban, highway, or secondary roads. For
the annotation we considered 13 different labels: ‘Standstill’,
‘Acceleration’, ‘Deceleration’, ‘Turn Left’, ‘Turn Right’,
‘Braking’, ‘Keep Velocity (KV)’, ‘Fast KV’, ‘Autonom KV’,
‘S Turn’, ‘Reverse’, ‘Lane Change’, and ‘Roundabout’.

D. Implementation Details

Regarding the neural networks, we follow [14] and do
not perform any hyperparameter optimization on the network
parameters. We evaluate our approach’s general hyperpa-
rameters: The window size w and the embedding dimen-
sion e. In particular, we evaluate w € [5,10,15,20] and

3https://github.com/White-Link/UnsupervisedScalableRepresentation
LearningTimeSeries

“https://github.com/LINCellularNeuroscience/ VAME

Shttps://github.com/davidhallac/TICC

Shttps://pytorch.org/

e € [3,5,10,15,20]. Each model is trained for 200 epochs
(800 steps for T-Loss) with a learning rate of le —4. Sliding
windows with a step size of 3 are used for training, and a
step size of 1 is used at the clustering and testing step. T-Loss
is trained with a reference window that is 3 X w.

Concerning the clustering algorithms, the number of clus-
ters is fixed to k& = 13, which matches the number of
ground truth labels. The k-means algorithm is run 15 times
with random restarts. For the TICC’ algorithm we use the
parameters window_size = 10, A = 5 — e3, beta = 400,
max_it = 3, thresholds = 2e — 5.

E. Best Performing Approach Configurations

We summarize the results for the best performing models
for both clustering algorithms in Table I, which also shows
the corresponding parameters e, w in the bottom rows. The
row F; summarizes the macro F; score over all classes. On
average, VAME* and VAME outperform the other models.
Drive2Vec follows closely, and AE performs the worst. T-
Loss and TNC fall short behind the generative models. We
will see in the following sections that this performance
difference is due to the ‘Turn Right’ events. For all other
driving events, the performance is similar. In addition, from
the results of the bottom e and w rows in Table I, we can see
that a higher embedding dimension of 10-20 and a window
size between 5-15 give the best results.

FE Latent Space

The latent spaces of the best-performing models are shown
in Fig. 5. In the top row, we depict the ground truth and the
predictions on the bottom. We notice qualitatively that the
majority of the ground truth classes are separated in the latent
space, and the unsupervised clustering prediction matches
them. The models can learn representations for data points
of the same driving event that can be separated by the k-
means algorithm at a timestamp level. For T-Loss and TNC,
we can observe that the ‘Turn Right’ event has no matching
cluster in the prediction (compare dashed circles), which is
an indication why their macro F}j score in Table I is lower
than for the generative models.

G. Segmentation

In Fig. 6, we depict GPS trajectories of driving scenarios
colored with a ground truth annotation (top row) and the
segmentation (bottom row) of our best model w.r.t. Table L. In
Scenario 1 (left), the vehicle exits a parking lot. In Scenario 2

"The original work [11] suggested ten or more iterations. The results with
three iterations are promising, and we consider running more iterations in
the future. More iterations can significantly improve the result.
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Latent space visualization, where 20 dimensional representations of VAME* have been reduced to two dimensions with TSNE. Ground truth
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(middle), it drives a secondary road with a roundabout and
enters a village. In Scenario 3 (right), it experiences a
common stop-and-go scenario in the neighborhood of a city.

We observe a high similarity in our predictions compared
to the ground truth. In Scenario 1, we notice that the first
right turn of the vehicle was annotated as an acceleration,
but our model predicts a right turn. Because both events
are correct, our model can support a human annotator. In
Scenario 2, our model cannot capture the roundabout in one
cluster, but it predicts corresponding turns. For Scenario 3,
the approach is accurate in predicting the driving event
states of the car. We notice that our prediction is sometimes
more accurate than our annotation, which shows a) that
an annotation process can be ambiguous and b) that our
approach can support a human annotator during that process.

H. Classification

We train a linear SVM with 10-fold cross-validation to
evaluate the linear separability of the representations and the
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Fig. 7. Exemplary clusters and their segments with real-world interpretation

results are shown in Table II. The macro Fj results show
that both generative and contrastive models achieve similar
performance, with the T-Loss model having a slightly better
score on average. T-Loss achieves comparable results for
most events when compared to the SOTA method Drive2Vec.
TNC is outperformed by T-Loss due to its neighborhood
estimation approach that is not well designed for CAN-data.

The events ‘Standstill’, ‘Acceleration’, ‘Deceleration’,
‘KV’, and ‘Fast KV’ are distinguished the best in the latent
space. This result also reflects the clustering predictions of
the latent space in Fig. 5. For ‘Autonom KV’, ‘Turn Left’,
‘Turn Right’ and ‘Reverse’, we see a drop in the scores,
which shows that the models perform worse for these events.
The ‘Brake’ event is not found because its encoded similarly
to ‘Deceleration’ due to an electric vehicle’s recuperation
mechanism. Furthermore, the events that are composed of
other events like ‘Roundabout’ can not be discovered with
our approach because the window size is too small and our
approach finds the events that compose it.

1. Simultaneous Clustering and Segmentation

We verify the segmentation ability of our approach, in
Fig. 7, with all segments of two arbitrary clusters. They are
visualized with five different vehicle CAN-data signals to



TABLE I
SUPERVISED MACRO F7 CLASSIFICATION RESULTS FOR EACH INDIVIDUAL CLASS ON TEST TRIP, G=GENERATIVE, C=CONTRASTIVE

Standstill| Accele-| Decele-| KV Fast Autonom| Turn | Turn | Reverse || S Lane Round-| Brake|| Macro

ration | ration KV KV Left | Right Turn | Change| about It
AE (G) 0.839 0.359 0.630 0.463 | 0.537| 0.188 0.341] 0.222 | 0.322 - 0.014 - 0.025 || 0.337
VAME* (G) 0.749 0.552 0.672 0.719 ] 0.705| 0.218 0.345] 0.223 | 0.662 - - 0.047 0.010 || 0.416
VAME (G) 0.764 0.593 0.683 0.715] 0.679 | 0.324 0.387 | 0.161 | 0.446 - - 0.026 - 0.417
Drive2Vec (G) 0.710 0.587 0.669 0.731| 0.671 | 0.280 0.348 | 0.154 | 0.458 - - 0.045 - 0.412
T-Loss (C) 0.742 0.471 0.652 0.676 | 0.717 | 0.204 0.320| 0.035] - - - - - 0.438
TNC (C) 0.801 0.535 0.666 0.679 | 0.447 | - 0.251 ] - 0.017 - - - - 0.386

interpret the events. From left to right, these channels are
“Velocity’, ‘Steering wheel angle’, ‘Accelerator pedal posi-
tion’, ‘Motor torque’, and ‘Brake pressure’. We only show
events longer than three seconds, because driving events
usually last four to six seconds [19]. Further, each segment
is stretched to the length of the longest segment in its cluster.
The dashed black line is the average of all segments.

Each segment in the ‘Acceleration’ cluster in Fig. 7
follows a similar pattern: The vehicle’s velocity increases,
the brake is not pressed, the accelerator pedal is pressed, and
the motor torque is at a high value. Similarly, in the ‘Turn
Right’ cluster, the steering angle increases up to 200 degrees,
which signals a clear right turn. The similar segments in both
clusters verify that our approach can simultaneously cluster
and segment vehicle CAN-data in an unsupervised manner.

V. CONCLUSION & FUTURE WORK

We present an unsupervised approach that discovers driv-
ing events in vehicle CAN-data. Using self-supervised learn-
ing (SSL), we encode all time steps of driving events
from the same category to a similar representation. This
property allows clustering each time step in isolation, which
simultaneously clusters and segments vehicle CAN-data into
driving events. Our experiments show the effectiveness of
our approach in unlabelled CAN-data from a Tesla Model
3 vehicle. Further, we find that representations from con-
trastive SSL methods perform comparably to state-of-the-art
generative SSL methods for CAN-data.

Possible extensions of our approach include discovering
different driver’s behavior patterns for events or sequences
of events with, for instance, a language model. In addition,
we can improve our approach with better representation
learning methods. For instance, we consider developing a
better neighborhood estimation method for TNC that better
captures the non-stationary nature of events in CAN-data.
Furthermore, we believe that our approach is generally appli-
cable to all kinds of multivariate time series data composed
of sequences of events. We intend to evaluate the approach
for vehicles with a combustion engine or even in other
domains (e.g., HAR, EEG) in the future.
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